Products of Schur and Factorial Schur Functions
نویسنده
چکیده
The product of any finite number of Schur and factorial Schur functions can be expanded as a Z[y]-linear combination of Schur functions. We give a rule for computing the coefficients in such an expansion which generalizes the classical Littlewood-Richardson rule.
منابع مشابه
Products of Factorial Schur Functions
The product of any finite number of factorial Schur functions can be expanded as a Z[y]-linear combination of Schur functions. We give a rule for computing the coefficients in such an expansion which generalizes a specialization of the Molev-Sagan rule, which in turn generalizes the classical Littlewood-Richardson rule.
متن کاملFactorial Schur Functions and the Yang-Baxter Equation
Factorial Schur functions are generalizations of Schur functions that have, in addition to the usual variables, a second family of “shift” parameters. We show that a factorial Schur function times a deformation of the Weyl denominator may be expressed as the partition function of a particular statistical-mechanical system (six-vertex model). The proof is based on the Yang-Baxter equation. There...
متن کاملSchur Type Functions Associated with Polynomial Sequences of Binomial Type
We introduce a class of Schur type functions associated with polynomial sequences of binomial type. This can be regarded as a generalization of the ordinary Schur functions and the factorial Schur functions. This generalization satisfies some interesting expansion formulas, in which there is a curious duality. Moreover this class includes examples which are useful to describe the eigenvalues of...
متن کاملA Littlewood-Richardson Rule for factorial Schur functions
We give a combinatorial rule for calculating the coe cients in the expansion of a product of two factorial Schur functions. It is a special case of a more general rule which also gives the coe cients in the expansion of a skew factorial Schur function. Applications to Capelli operators and quantum immanants are also given.
متن کاملOn Schur Multipliers of Pairs and Triples of Groups with Topological Approach
In this paper, using a relation between Schur multipliers of pairs and triples of groups, the fundamental group and homology groups of a homotopy pushout of Eilenberg-MacLane spaces, we present among other things some behaviors of Schur multipliers of pairs and triples with respect to free, amalgamated free, and direct products and also direct limits of groups with topological approach.
متن کامل